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ABSTRACT

A theoretical study is performed of the flow in a thin shock layer about
axisymmetric blunt bodies by a Blasius type series expansion technique. Solu-
tions were obtained for three terms in the series, and the validity of the
resulting solutions is shown to numerically converge away from the stagnation
point to a body angle near the sonic line (~ 45°). The primery objective of
the investigation was to determine the coupling experienced between the
radiative and viscous transport. Consequently, soclutions were obtained for
both the viscous and inviscid models at three extreme earth reentry flight
conditions. A real gas model which is both emitting and absorbing radiant
energy in a three-band continuum radiation model was considered. The dif-
ferential approximation method is used to describe the radiative transport.

A cold, non-blowing wall is assumed and the Prandtl number as well as the

viscosity-density ratio are assumed constant.

The results indicate a weak coupling between viscosity and the radiative flux
distribution. The influence of radiative transport upon the convective heat-
ing is shown to be significant; however, the effect of radiative transport

upon the velccity field is small.
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NOMENCILATURE

Ai,l’Ai,l"' coefficients in the serieg expansion for integrated intensity
B blackbody radistion

By body bluntness (b/a)2 (see Fig. 1)

Bv Plavék function

C speed of light

fl’fe"' coefficients in the serieS'eXpaﬁsionrfor tangential velocity
Gl’GE"' coefficients in first order enthalpy and velocity solutions
gl,ge... coefficients in the series expansiop for total enthalpy

H total enthalpy

h gpecific enthalpy, Planck constant

Iv spectral radiation intensity

IO integrated intensity

K 1+ Ky

k body curvature, Boltzman constant

M Mach number

m mass

N mass density viscosity ratio psus/pp

NN number density of nitrogen atoms

b pressure

Pr Prandtl number

coefficients in the series expansion for radiative heat flux

Q,1°% 2




spectral radiative heat flux in the direction of x and y; respectively
normalized total heat flux

distance measured from axis of symmetry

body radius of curvature at stagnation point

shock radius of curvature at stagnation point

Reynolds number pQU@Rs/us(o)

temperature

velocity component parallel to the body

velocity component perpendicular to the body

coefficients in the series expansion of normal velocity
distance parallel to the body measured from stagnation line
distance normal to the body

absorption coefficient

degree of dissociation

specific heat ratio. Cp/Cv

shock layer thickness

stagnation point density ratio across shock

normalized stream function

dissociation energy

ionization energy

frequency

quantum mechanical correction factor for absorption coefficient
density

normglized skin friction

stream function

parametric varisble defined by Eq. (Th)
v




Subscripts

quantities at shock
quantities at body
quantities at stagnation line
lterative solution

nitrogen

electron

free stream conditions
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Sectton 1
INTRODUCTION

The abilify to predict the convective and radiative heating experienced by a
reentry body at and away from its stagnation point is necessary for mission
planning and vehicle design. To date the stagnatiop point analysis has been
of primary interest. At the stagnation point, all physical mechanisms of
energy transport are represented, and it is anticipated that the stagnation
point represents the location of maximum heating. Consequently, the momentum
and energy fields of the stagnation point have been described in somewhat com-

plete detail (Ref. 1).

In order to obtain the complete heat load distribution, however, the convective
and radiative heating loads away from the stagnation point are essential. The
complexity of including the detail of the transport mechanisms into the
complete momentum and energy equations around a body results in solutions
which becomes prohibitively time consuming even with present-day numerical
techniques. This investigation was to develop a simplified analysis to study
the coupling between the momentum and energy transport mechanisms in a thin-

radiating shock layer (viscous and inviscid) away from the stagnation point.

A Blasius type series representation of the inviscid, adiabatic, hypersonic shock
layer about a blunt body has been shown to be adequate to the sonic line (Ref. 2).

In this study, the same technique is employed to study the radigting shock layer




for both inviscid and viscous cases. As a result of this study, it is expected
that the distribution of radiative heating around the body can be determined
both qualitatively and quantitatively, that the effect of radiation energy loss
on the velocity field and the degree of.coupling between the gas dynamics and
the energy distribution (radiative and convective fluxes) can be determined,
and that the effect of boundary layer on radiative heating to the body (if any)
can also be determined. The underlying concept of the formulation for velocity
field can be found in Part I of.Ref. 3. The radiative transfer equation is re-
placed by the well known differential approximation, e.g Vincenti and Kruger
(Ref. L), and simplification is made assuming a thin layer which is consistent
with those made in the fluid mechanics. A three-~band model is used for the
continuum absorptioun coefficient. In each band analytic expressions are
available (Hoshizaki and Wilson, Ref. 5) that give explicitly the frequency
dependence of the absorption coefficients. Thus proper integration can be
performed in each of the frequency ranges and mean quantities such as radiative
heat flux can be found in terms of the local thermodynamics. No line or mole-
cular band radiation is included in this study. The body wall is assumed to be
highly cdoled in comparison with the gas behind the shock. Perfect gas thermo-
dynamics are not assumed. The equation of state is obtained by curve-Titting

the data based on numerical evaluation for air of Neel and Lewis (Ref. 6).

The details of the formulation in this study are outlined in Part IT of
Ref+3. 1In this earlier work, however, only two terms of the series had
been formulated and they are represented by a group of universal functions

which were independent of particular body shape. TIh this study, no universal

2




function will be evaluated since we will only be interested in a specific type

of body. Three terms of the series have been formulated and solved. Many
errors contained in the Part IT of Ref. 3 have been corrected in this study.

An inviscid solution as well as viscous solution will be presented.




Section 2

ANATYSTS

2.1 GOVERNING EQUATTIONS
The fluid conservation equations (mass, momentum, energy) for axisymmetric

bodies, written in a body oriented coordimate system (Fig. 1), are:

dpur |, dpvrk _

ox dy 0 (1)

o o 3
pu 3% + pvk 5% = Bi + %;( g%)- pkuv (2)

~3p . 2
k5o = kup (3)

u(l ) -
JH JH _ "R @g + o Pr au J S [S _ ]

pu ==+ kov Sy = (Pr ay ay 7 I, & B {av (L)

The y-momentum equation has been simplified by retaining only the terms of

order unity.
The radiation field. is coupled with the fluid mechanices through the integral
term in the energy Eq. (4) which represents the radiative energy loss or gain

per unit volume.

In seeking solutions of the radiative transfer equation, we will use the

differential approximation. In the present case of a thin hot gas with a cold

N




Fig. 1 Sketch of Geometry




wall and cool gas in front of the shock, the differential approximation has been
suggested as a valid description of the radiative transport (i.e. Ref. 4).
In the framework of —the differential approximation, the radiative transfer equa-

tion 1s approximated by the following set of equations.

veq, = - o [(T), - kB ] (5a)
with
a(Io)\)
5y = - 3o,(q), (6)
2(5,),
__-E_X_.. = - 30{\)((1)()\) (7)

In the case of the thin shock layer, d/dx << 3/dy, and we make the approxi-
mation that™

3(a,),,
vea, :f——%%}—

Thus, Eq. (5a) becomes

3(q,)
Sy o, (1), - W8] (50)

oy

One immediate consequence. of this thin layer simplification is that Egs. (5b)
and (6) are sufficient for the determination of a, and I ; Eq. (7) is

only needed for calculating o,

*
The error introduced by this approximation is shown to be of the order. 62
(Appendix II).
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We will now consider only the absorption coefficient @, for continuum
radiation and neglect the line and molecular band radiation. We

will also take the three band model for av; namely, we approximate o, by
three analytic expressions in three different frequency ranges of the spectrum.
The specific form of av and the range of frequency interval will be presented
in the next section. Here we will represent the frequency interval generally

by (Ahv)i, i =1,2,3. We then define

(2a,); =S ay(a), @ , (e1.); = S o (1), av , B, =S @ B, v (8)
(Ahv)i , (Ah_\))i (Ahv)i

Clearly

“y

1
oL 8

(o) = T (o))
oI = Sra Ibdv 2 (aI ) (9)

o B dv = 2 B,
vV i

os}
I
oL 8

With substitution of Egs. (9), Eq. (4) and the radiative transfer Egs. (5b)

and (6) (after integration with respect to frequency) then become

B g G ho- B 5 @] drem)m w

ox )




= - [(aIO)i :74nBi]

).

3%;—)—1 - 3(aq), (12)
We now proceed to normalize the variables. The distances x, y and the
distance from the axis, r, are normalized by the stagnation point shock
radius RS, the velocities u, v by the free stream velocity u,, the
density ¢ by the free stream density p_, the pressure p by twice the
free stream kinetic pressure me§’ the body (or shock) curvature k by
l/Rg;**the total enthalpy H as well as the static enthalpy h by Hs
and, finally, the stream function ¢ by pmuwRi. The temperature is normal-~
ized by the temperature immediately béhind the normal shock Ts(o)’ the

viscosity by i%s value immediately behind the normal shock us(o) and 4,

Io’

B are all normalized by the quantity [kTS(O)]h/h302. From here on,

the equations are all written in nondimensional form.

X

() = e\ ppax , Mey) =d5, b = pur ay - vk ax  (13)
r
O S

the congervation equations can then be written in &, T coordinates as

dr2

s SHY} _ _
ag am/)




ep g gn [ri g % R AR - - HE g%>] - 7 BT,
- B, ] (16)
u Efg%zi = - kirs[(an)i - uﬁBi] (17)
o(T,);
U = - 3hy7 (oan); (18)

with i = 1,2,3 and Re = pQUmRS/uS(O).
In Egs. (14) and (16) the following approximation and assumption were made;

nemely, r o~  and pp/psus = N = constant.

Expressions for the radiation parameters Xi and Fi will be given in the

next section after o is specified.

Equations (14) and (18) are to be solved by satisfying the proper boundary
conditions and a state equation (given in the next section). The boundary
conditions for the flow field are given as-follows:
at the shock,
n = 1/2,
U =Ugy P =Dg, p = pPgsy H=Hg

and Hg, us ps, p, are given by oblique shock relations;

at the body,




For the radiation field, the differential approximation gives us the condition:
at the shock,

for cold gas ahead of the shock, we have.:IO - 2qy = 0, which

then implies (Io)i - 2(qy>i =0 for all i.
at the body,

the cold wall assumption I + qu = 0. Thus, (Io)i + 2(qy)i = 0,

for all 1.

2.2 GAS FROFERTIES
Curve fitting of the equilibrium properties of air calculated in Ref. 6
suggests the following approximate equation of state:

~2.5

p = 10 (19a)

with p in atm., p is amagat, and h/R in degree Kelvin. This then implies

that in the normalized form, the equation of state is

0.84

=2 (&
P; -5 &) 7 (1)

]

Another equation of state for air is also available, unamely

-1.72
0 = 1.65 x 1077 p(T/lo“j”

= (20)

cm

where p is in atms and T is in K. Equations (19) and (20) thus completely

specify the equilibrium thermodynamic properties in-air.

10




In the hypersonic limit, i.e., h_ << 1/2 Ui(H& = H, ~ 1/2 Ui), the thermo-
dynamic properties immediately behind the shock at the stagnation point are
completely determined by p_ and U_. This is shown as follows: From Eq.

(20), after normalizing T by Ts(o)’ p by ani, p by p,, one can

write
L
o 1.72
: T = cl(55> (21a)
with - : L
5 L1.T2
1ot (1.65 eqm) (o10)
C., = 21b
1 Ts(o) 101:L

We note all quantities in Eq. (21b) should be in c.g.s. “K units. Now since
at the stagnation point T =1, p=1- ¢ and p = 1/e, Eq. (2la) immediately

yields a relation

.72 ,
c, = ( —e) ~ 1 (for e << 1) (22)

Applying Eq. (l9a) at the stagnation point behind the shock, we have the

relation for hypersonic flow [i.e., hs(o) &z%'Uzj
0.84
2 -
6.5 U
10 ©
e(1-e) = 2|2 (23)
1.29 U5

in Eq. (23). R is the universal gas constant and the unit of Ug/R should

always be in OK.

Equations (21b) and (23) thus give two relations to determine e and TS(O)

for a given p_ and U_.
11




From these considerations, we conclude that in the hypersonic limit, the inde-
pendent parameters in our problem are the f£light condition (pw, Uw),

Prandtl number, viscosity-deunsity product ratio, and characteristic length
Rs' The parameter RS is an Iindependent parameter since it appears in the

radiative transfer parameters explicitly.

The analytic expression for the absorption coefficient in our three band model
is taken from Hoshizaki and Wilson (Ref. 5). In fact, in Ref. 5 the expressions
are given for more than three bands, for accuracy. However, we group them

into only three. In.addition, the contributions from ions are neglected and

we treat oxygen as I1f it were nitrogen. In other words, in the calculation

of absorption coefficients, we model air by a pure nitrogen gas. In this

model, we write --

o, = (1 - o~ hv/KT) (K,)y (2ka)

with '
g
(K )y = 458 NNkTe‘(lb“?"h\’)/kT ——N3 0% hy < h.oo
(hv)
(2kb)
g
(K )y = 4-5 & NkT —N——3 ¢~10.08/kT 4.22 £ hy < 10.8
v (hv)
(X)y = NPy 1 10.8-< hv < 12.0 (2ke)
2
(K, )y = Nyloy 1 * oy o) 2.0 <hv = @ (2ka)

12




=-5.16 x 107 e—3’5/kT/(u + 10 e‘2'38/kT + 6 e-3-57/kT)

n,1
(2khe)
-17 e-2.3/kT/(u + 10 e-2.38/kT ‘6 e—3-57/kT)

a2 =7.28 x 10_16 em® - eV

where NN is the number density of nitrogen atoms and gN is the quantum

mechanical correction factor. We approximate §N by

Eg = 0.24 + 0.0k26 (hv - 4.22)2 ‘ (25)

The ranges of the three-band model are chosen as (Ahv)l, 0 < hv < 10.8,

(Ahv)e, 10.8 <.hv < .12, (Ahv)3, 12 < hv < =,

In the first band (Ahv)l, @, is small, and the optical depth (in this range
of frequency and based on the shock layer thickness) is much less than unity.
Hence it is reasonable to approximate av in this range by its partial Planck

mean, defined as ST e

S avadv
(Ahv)l

al =

1
g Bvdy
(Ahv)l

The superscript (’) denoctes dimensional quantities.
In the second and third bands, hv/kT is large, cousequently

And we can take «l, @! as independent of frequency, i.e.,

2”7 73




al = NN@N,l (262)

ay = Myloy | + 9y o) (260)

By using Egs. (26), (26a) and (26b), one finds

(@rar); = ajlag)y
(27)
(@'L));

Il

1
ai(Io)i
and after performing the integration, ai, Bi, Bé, Bé are found to be (kT

is of order 1)

93w e lH-3/KTp 1 kT[o.eu + 0. 0853(kT)2]}

N
@ = o (28)
9 & N kT
Bl = —;3—§EE— e 1H3/KT 5 1 4 xalo.2h + 0.0853(kT)2]} (29)
C ®

oN
By - zﬁzél (™ g -10. 8/kﬂ[(1o 8,3 v 3128 8%, 6(10-8 & 4 6]
_12/%T [,12\° 12,2 12
- e (G + 36D + 66D +¢] (30)

1 ENN(CP ) +QPN: ) Lo~
sy - T ) g i [ o

1k




The atom number density NN is related to the total number density (and
eventually density) by taking the following model. Namely, we assume that
there will be no ionization before the gas is totally dissociated. In the
dissociation phase, we relate the atom number density to the total number
density by using the Lighthill's ideal dissociation model. For the ionization

phase, we assume the gas is in Saha equilibrium. Hence, for the dissociation

phase, we have

N, = B N, (32a)
o R Te—ed/T
62 ) d A, (320)
1. 62 P ?
r - K
A, 2om
and for the ionization phase
Ny = (1 - 9)N, (33a)
2 5/2 -6,
T p
l—°P—2 —c T 1/ (33b)
-®
om m_ 3/2
c=2 hge) /2 (33¢)

By using the relations (26) to (33), one can find the expressions (in non-
dimensional form) for «'s, B's, A's and I''s involved in the energy Eq. (16)

and the radiative transfer Egs. (17) and (18) are as follows:

15




o~Cu/T 3
Lo 1 + 05T + C6T ]

/@) + 3@ + 8+

—07/T

) e-07/'11/(4 + 10 e_C8/T *6e )
®

) e—C7/T(1 +'1.2ufec9/T)/(4 + 10 e_CB/T + 6 e_C7/T)
©

B

-C, /T
) Te ¥(o.1 4o+ C6T3)
o 5

o {e‘a/T (a3 + 3827 + 6ar® + 673) - & P/T [(b3 + 3p2T
+ 6pT" + 6T3)]}

e P/T (13 & 321 + G2 + 613)

98 R_p, 5.16 x 1017 o R

® 5

m{kTs(o)]§ m




g - 108 . __l2 _1k.3

a kTS(O) ’

—_— = , C. = 0.24 xT
kTs(o) 2L kTS(O) 5 s(o) ’

[e>]
1

2T g 233 4 = 0.058 [kT 1°, 0, =22
7 Koy 7 Ky T O s(0) T ¥G(0)

2.38 1.2
Co =75755%— , C, = 75— (43)
8 kTS(o) 2 79 kTS(O)

where KT in eV.
s(o)

The factor (l _5_ (p) in front of Egs. (34) to (37) denotes that during the dis-
sociation phase, the value B should be used and during the ionization phase

(1L - @) should be used

2.3 SERIES FORMULATION
Similar to Part I of reference 3, one can write the following series expression

immediately behind the shock (See Appendix IV):

ug =€ + ul§3 + u2g5 + o

g+ rgd +rg’ + ...

T, =
ps=l-§2+p2§h+---
(hk)
4
b, == (1~ pE°- PE + er)
2 L
ko= 1+kES+KE + ...

2
By =1 - B8 - uggl* + e
17




These expressions” dre "valid under the approximation of the thin layer con-
cept, i.e., we have approximated the factor ugs which should appear as a
factor in the expressions of u and ry oo by taking Uy = (dgs/dg)o = 1.
This approximation is redsonable for small values 0f e. We also note that

in the expression for ps; we have neglected the term €, by setting 1 - ¢ = 1.

Based on Eq. (44), we assume the dependent varisbles can be written as

w = (ME + £, (E7 + uyg ()E” + ...
=g () + e (ME2 +g, (ME" + ...
gy =N g3
), (45)
(Io)i = Ai’l(n) + Ai’g(n)ge + Ai,3(n)§ + oo
(@), = a; ;M) + @, (ME> +aq, (ME* +
/i T %41 1,2 1,3
Also, from the discussion in the previous. section, we can write
2 4
T = Tl(l + TET * T3g T oaea) (46)
B =8, (1+BE"+ 535” ) (47)
2 L
P = (1 +gE" oL + ...) (48)

After using an approximate serieg representation for the exponential functilion

(see Appendix III), we obtain

18




i =1,2,3.

All coefficients are defined in Appendix T.

Substituting Eqs. (L4) to (50) into the governing Egs. (14) to (18) and

collecting the same power of &, we obtain the equations for fl’ g1 Ai 17
2

Qi,l’ for 859 Ai,2’ Qi,z’ f3, 835 Ai,3 and Qi,3 (we note the pressure is
obtained by integrating Eq. (15)).
FIRST ORDER
ar ar
1, . 0.84 N a 1
£(f - 2N gg™) = 3¢8;" *ore f1a (FLam (51)
dg dg
1 N a _
My gt eremr fiam Fram) *Fule) =0 (52)
Q1
—2 = -
£ Mg (e oAy 1 - MBy G) (53)
4Q; 1 L
’ = — - 7 =
£, an Kiao,oai,l(Ai,l lmBi’l) i=2,3 (54)
dhi 1
—ted s
£y 3A9% 0%,1% 1 i=152,3 (55)
SECOND ORDER 0.8k
. £ a_ (f _di £ F if_g) - f (Sf -2 dfg) - 3€f2gl
cRe "1 a7 ‘T2 an 1 am 1% an £
0.8
ar €g
2.52 _ -0.16 1 _ 1 1 [ 1
il g, - 2 ulfl(fl M o) 3(-M +2.52 (1
. 1 .
flz ,
- q)Jf Hy +3p, =0 (56)
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dg dg dg
N 4a 2 d 1 2
1 {—_eRePr [d_’r] (£ g * woam (5 aﬁ] * 2N 5 } - (

L
Pr

dg; g

at
— l)
1 4an €RePr

(£,° n

- 2rl) F, - 2g,f + 8rlnf (1 - =) £ dﬂ

aQ
1,1 [ —
—_——2 = . ! e
tuy s —ay M Lroley oy 18y ,1 - By By 1)

+ -
0%, 28,1 T ¥1,0%,1R,2 ””31,031,2]

de. aq.,
f .__l'.-’_..2_ + £ __._];L].‘. = = }\_. [a_ (A
i i,0

1 7an 152 & - By )

+
i,1 1%,1

Ty gy g8y o - ”“Bi,e)] =23

dAi 2 dAl L
—2= 4+ —_— = _
ST 25—y 3y [rlai,Oai,lQi,l toy o¥%,0% 1

N ai,Oai,lQi,EJ i=1,2,3

THIRD ORDER

2 2
N {d.(f 3) 2u, °f, d (flfg)
1

+
2 u,f 2

eRe an of1 an

ef, af, £
.8& Y1 o )
ﬂ} &1 E;—fZ(;L"mﬁlEf_
1

5 af
+ 6r u.f, - 27 3(2r2 +ry ) ol

2 )
+oryT)E) +Suyfy 1%1te

Y2 A




+ hr_u Efg] - e 2r. f
1% 3 uy 1t1

0.84
€
+ i S (30, + o B +H,) =
Uy 2 171

dg
uyfy an

g
N d 1
1 {eRePr [Eﬁ (upfy g7~ *

dg
*3 Eﬁ; (2r, + rlg))' b-(rie, + 83) * 2 G55 eRe (1-%

£

dQl 3

an_ (17 -

daQ
uf)____l.a.g_
12 an

= - +
A [“1,0“1,1A1,1

@3 ) Q0

an - (1 - wt, an

== A [“i,o“i,l(Ai,3 - LkmB

+
c‘i,o"‘i,;«;(‘A‘l,l

+
3ulf

(rgfl - u,f

+
%1,0%,2%1,2

- (r,f, - u,f
271

af

- 21 (hrl an

(dg3 ), dg2

dg
3
@ )] FLam

1 1) da

af
1
uld_'ﬂ(ff

12 an

Uy oy U Tompsfy

f

ulfe'“l)

dQ
1,1
an

ﬂBl,OBl,3]

% o%,3t, " K
(63)

+ wr £ - 7.°F )

273 17172 171

49 1

dn

+ ur. f. - v °oF )

273 112 171

@ o% 3(8y o - BBy L)

i = 2,3




an; o aa; , 2.y By
ST o N - — L= _ - - —to
T =3 (zyfy = yyf)) an (rpfy - wpfy * ryugfy - vy°fy an
= - 3% o [O‘i,lQi,3 Ty o8 o 7 O‘i,3Qi,J i=1,2,3 (65)
. I . - . 1 .
See Appendix for definitions of Fl’ FE’ F%, Hi, Hé, 915 95 The boundary
conditions for these equations are:
t wal £ =f,=f =0 = =g, =0
ot wall 1555570, & ~g & =8 -
A + 2 *’O* 2 j =
1,3 Ql;J = i=21,2,3 Jj = 1,2,3
(66)
at shock fl = i2 = f3 =-1 g = e & = g3 =0
A5 7 %y =033 =123

Since the ratio N/Re is zero for an assumed fluid model of zero viscosity,

the energy and momentum equations for the inviscid case can be written from

Egs. (51), (52), (56), (57), (61), and (62).

FIRST ORDER
ar
1 2 . 0.84 _
2Ny g- - T * 3eg = O (67)
oNF ig-l +F. =0 (68)
1 M 1 '
SECOND ORDER
df2 (-:g_.?'alL 2.52 cg,
aney gqo - 306y * £ Yip * 7
%181 (69)
2 0. 8l 2
or. f eg £
I [3(i_n)+2,52(1__.l..)+5 + 30, - 12r, = 0O
" 0 2 P 1 1 1
1 1 1
*

The wall is at constant temperature and is non-radiating.
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1an
THIRD ORDER

P

1an

Eﬂfl ’aﬁ—

As viscosity does

(54), (55), (58),

inviscid model.

vty
- 2f g, - ( £ + 2rl) F, +F, =0 (70)
3€gO.BLL egO. 8k 5
1 1 3 _
- (5fy * ) ) T+ o (30, + oy + Hy) ", T ©
(71)
uyfs 2
- uflgB - £ F, +Y[Gu + (rl +2r2)Fl +2r F, o+ F3] =0
(72)

not influence the radiative transfer directly, Egs. (53),

(59), (60), (63), (bL), and (65) are applicable in the

The boundary conditions for the inviscid equations are:

at wall: Ap 29 ;=0 i=1,2,3 j=1,2,3
at shock: £, =f,=f;=1 g =1 g, = 85 = O (73)
Ap =89 =0 i=1,2,3 j =1,2,3
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2.4 METHOD OF SOLUTION
2.4.1 Viscous
Prom Egs. (51) to (55), we observe that it is convenient to transform the

variable from T to. ®w by
(T4)

Equation (74) is solved subject to the condition w =1 at T = 1/2 and
w=w, at M =0. The w  is determined from Eq. (Th). It is also con-
venient to stretch the coordinate by w = l/JX ®w where A = N/eRe. To
retain Eq. (7h), the TN coordinate is also stretched by T = 1//A M. From
here on we will use the stretched coordinates but omit the (-) for simplicity.

In the w variable, a formal solution can be obtained for fl, 8> Al's and.

Ql's as follows.

The first order energy equation (Eq. 52) can be written in terms of the new

variable w as

2n———+—l—a~g—l+F(g)=o (75)
dw Pr dw2 1=l

A solution of Eq. (75) can be written as (subject to the boundary conditions

g (w)) =g and g (1/WRX) =1)

g, (w) =g - Pr Gy(w) + mlG3(w)




-G G
. . 1L L
with G2 = S e dw S Fl e dw
W w
e} o
-PrG
G3 = S e 1 dw
W

(@]
1]

-2 e

1
1+ Pr GE(—K

. 5%

L
G3(ﬁ)

where & is the wall enthalpy.

The first order momentum equation (Eq. 51) can be written in the new variable

W as

¢t dfl 2 0.8k

2+2ﬂ-d_TD_-fl +3€gl- =0 (77)

We now differentiate Eq. (77) with respect to ® +to obtain

a3, o’ 4
-+ —— —
M —3 *+ 3 g (g

0.84
3 )
dw dw

=0 (78)

The solution to Eq. (78) can be formally written as

£, (0) = 6elw G5(w) - Gg(@)] - 3elw G7(w) - Gglw)I+m, (w-w ) (79)
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with GLI- = dw' _
w
O
G5 = S Gh dw
w
@]
G6 = g U.)G'Ll_d(l)
w
O

=
il

) 1 1 1 1 1
5 1 + 3e L;% G7 sy%) - G8 (;%)] - be ;% G5 (;%)

Iy - o
P <ﬁ>]/<ﬁ )

The boundary conditions used for Eq. (79) are

8l

feg) =0 B0 =L Sl - 3ee, "

A formal solution for the radiative transfer equations (Egs. (53) to (55))
can also be obtained. For example, in the first band (i = 1), the radiative

transfer equation can be written as
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A N W Sy
dTl 1,1 1,0
(80)
e VS Y
d’rl 1,1

where

Ty T N/ Klgw al,Oal,ldw
o

The solutions to Egs. (80) subject to boundary conditions of Eq. (66) are

3Ty /37,
Ql,l = Ce +C, e + 2ﬁ(£l+£2)
3 3 o1
3 -3
Al’l = - ﬁ(cle 1 - Cye Tl) - 2«[§W(£l—£2)
with [ J‘
371 3Ty
£ =
1 S 1 O dw
£2 = e-ngl S il,O éJng dw
W 1,0
and
¢, = - (213 ¢,
2-/3
., - Zn[sl@ﬁ) + (2 - V3 5,032 ] 1
==)
(2n/3)% R e R
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Similar solutions can be obtained for the second and third bands.

The solutions to the first term of the series expansion are then given by
Egs. (76) to (81). 1In order to evaludte these functions, however, initial
fl(w) and gl(w)” profiles must be assumed. Hence, the solution technique
requires a double iteration. A gl(m) profile is first assumed. A fl(w)
profile is then assumed and an w_ = determined from Eq. (74). Utilizing this
w,, a new fl(w) profile is obtained from Eg. (79). A fl(w) and W
solution is therefore obtained when the fl(w) profile converges from an
iteration of the above procedure. Based upon the wo and the converged
fl(w), a new gl(w) is calculated from Egs. (76) and (81). The solution

is obtained when gl(w) converges to * 3%.

For second and third terms of the series, i.e. f2,7f3, 855 g3, no formal
solution can be written. The differential equations can be written in
gimplified form such that they are numerically integrated from the wall
(at wo) by guessing values of df2/dw, de/dw at the wall and gg(w),
g3(w) until the boundary conditions at the shock are satisfied. The
radiative transfer eguation can still be solved formally, the form of the

solutions are similar to that of Egs. (81).

2.4.2 Inviscid
In Egs. (67-72) it is convenient to transform the variable from 1 to
as defined by Eq. (74). The resulting equations can be numerically integrated.

subject to the boundary conditions at the shock (Eq. 72). A problem arises
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near the wall in that the solution becomes indeterminant as 1T approaches
zero. Considering the first order equations, the solutions of fl and =
are obtained by the following iterative technique. A gl(w) profile is
assumed and the radiation field obtained from Egs. (81).% Equations (67, 68,
T4) are then numerically integrated to obtain W, fl and g+ As the gas at
the stagnation point, T = 0, is in radiative equilibrium, a gl(wo) is
determined such that the flux divergence, Fl is zero at the wall. An
fl(wo) is obtained from Eq. (67) such that the velocity gradient is bounded

at the wall. A solution is obtained when the iteration on gl(w) converges

to + 3%.

Solutions for the second and third terms of the series, 855 fg, g3 and f3,
are obtained in a similar manner. As W, is determined in the first order
solution, the indeterminant nature of the higher order equations is avoided

by integrating to w_ + Aw (m = 1o‘u).

Once f's and g's are determined, we can find the density from Egs. (19b)

as

% = eglo'Sh[l + 0152 + cggu] (82)

where Gl and 62 are given in Appendix I.

The physical normal distance y(w) is then given by the transformation Eq.

*
Note that A = 1.0 for the inviscid solution.
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(13), nemely

v =

o~

pur — s pu
o)

2
an 4
\ Ts an (83)

e}

and the shock locaticn A(E) can be obtained by evaluating Eq. (77) at

N = 1/2. Also, from

where (—B-Il);y denotes

For the viscous.

are also of interest.

2
pU-)

After using Egs. (74)

T

WA B
= L

1 +-rl§2+r2§

In Eq. (85b), we have

transformation Eq. (13), we obtain

dr .
ov=-[on 2 D] (84)

S

differentiating 1 with respect to & at congtant .

the convective heating to the wall and the skin friction

The skin friction. can be written (normalized by
- (y 4
T Re = (u 7w (85a)
o]
and (83), we obtain

N p i
T Re = —= (& %%)w (85b)
Ty JK 1 Qo

f £ af. af. .
to 2 i o2 o
[(l R T SR fil)(dw T g S

af
3.h
Uy g S )]wo

m}H

taken Py = const = Convettive heating to the wall
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(normalized.by'i P U2) is given by
2 Toww

. By ( s o £y, 98
= — L+u =——E° +u, ==& )=
Pr (1 + rl§2+r2§l+) 1f) 2 T, dw
dg dg
2 2 34
T 3w © ) W, (86b)

In order to solve the energy and momentum equations by the series expansion
methods presented in this section, it was necessary to expand the radiative
flux in a series form (Eq. 45). Series solutions for a wide range of flight
conditions indicated that the radius of convergence for the velocity and
enthalpy series was significantly larger than the radius of convergence for
the radiative flux series. This problem has been noted by others (Ref.7)
who have solved for the radiative heat flux by series expansion. (This will
be discussed in more detail in the results section.) The reason for this
appears to be associated with the difficulty in approximating an exponential
function with a large argument by a finite series. This expansion is dis-

cussed in Appendix III.

In order to avoid this difficulty, the radiative flux is calculated
directly from the full radiative transfer and intensity equations.

We can see from Egs. (17) and (18), € does not appear explicitly in these
equations; therefore, they can be considered as ordinary equations with E
as a parameter. Hence, once the series solution to the enthalpy profile is
obtained, the corresponding radiative flux and intensity can be determined.

The second and third order radiative flux solutions (that will be
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discussed) therefore correspond to the solution of the radiative transfer

equation with the respective second and third order enthalpy profiles.

The solution to Egs. (17) and (18) are given as (similar to Eq. 81)

JgTi 3Ti 1
(apgly =Dy 7 @ *Dype TS (4 gt A )
N - (87)
(L) =-D; ;e T Dip® - Ly Ay D)
where . - by
,\/_T /37
JZ,i,l = S bt s e dw
—/\/§‘T,. I\/§'T'.
L. = e L S byt S.e aw
i,2 i
wO
L)+ (2-v3) 4,
b, (=) + (2 -/3) 4, (=)
D ‘7277= .L,lﬁ i, 2 A/—.}:
2 «/— ( ) /37 (
e m? TR o m2 R
_ _ 2t y3
Dii=- 3=/ Pi2
a. (1L +rE° +r gu
T, = S L & dw
u_ - u T8 u,LE
£ £y
B,
SleZ » S, =B, , 85=B,
B, £(8)




and the total q,ﬂ and IO are
3 3
an = ) lagdy 5 T,=) (1) (88)
i=1 i=1

It should be noted that the £ 's, gl's and wo's (wpich are implicitly

1

involved in ai‘s and Bi's) are functions of w based on the series

expansions of and IO. The results indicate the solutions of fi‘s

g
l
and gi's are relatively iunsensitive to the approximation involved in
the series expansions of q,n and IO } The solutions of q,n as given

by Egs. (87) and (88) were found to have the same region of validity as

that of the velocity and enthalpy profiles.

2.5 FLIGHT CONDITIONS CONSIDERED -

As one of the prime objectives of this investigation was to evaluate the
influence of coupling between phe momentum and energy transport mechanisms,

case runs were selected with flight conditions and body dimensions* applicable

to the hyperbolic reentry problem (Ref. 8) which produced the maximum coupl-

ing effect. The maximum coupling will occur at the maximum value of the
radiation-convection energy parameter I (product of  inverse Boltzmann

number and the optical depth). As the Boltzmann numbgr and optical depth are
independent parameters, the flight gonditionsrcpmmgnSurate with a maximum T
value for a minimum and maximum value of optical depth were used. In addition to

these two extreme radiation cases, a check run was made for free flight conditions

* - -6
11 < U_ < 18 km/sec; 107 < p_ = 107" gn/emd; 50 < R_ < 300 em
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currently being investigated as a "standard" hyperbolic reentry case. A
corresponding case of no radiation influence was made for each of the three
cases noted and the resulting matrix of six cases were investigated for both
viscous and inviscous models. (It is noted that the Reynolds number becomes

a dependent parameter when the optical depth and the radiation-convection

value I are used as independent parameters.) Table 1 is a summary of the
parametric conditions of the three cases investigated and Figure 2 (Ref. 9)
illustrates the corresponding regions of interest on a thermodynamic properties

plot of reentry conditions.

Numerical solutions are obtained by the input of the free flight conditions
(velocity and density), stagnation point shock radius, Prandtl number, and

the viscous parameter X\ for the viscous case (A = 1L for the inviscid case).
In that the coordinate system used in the formulation was body oriented,

an assumed shock shape is required. The shock shape is input through the
constants of the parameter series expansion along the shock (Eq. 44). These
constants are, for a given body, all a function of the bluntness parameter Bs'
(Assuming the shock is conical in shape.) The values of Bs can be found

by first assuming a value, then adjusting it to fit the calculated shock
shape. First guess values of Bs in this report were taken directly orx
extrapolated from the curve given in Lomax and Tnouye (Ref. 10). TNo iteration

on BS ls carried out in this study.

The computational time on an 1108 computer per solution (three terms) ranged

from 1 1/2 minutes for an inviscid case to 4t minutes for a viscous case.

* -
U, = 16 xm/sec; p_ = 4.21 x 10%? gm/cms; R, = 234 cm.
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TABLE T
PROPERTIES FOR CASES INVESTIGATED

I
Free Stream Velocity (km/sec) 16.0
Free Stream Density, p_ (x107! gm/cmd) k.21
Stagnation Point Shock Radius, R, (meter) 2.3k
Normal Shock Density Ratio, e 0.057
Reynolds Number, Re (memRS/uS(o)) 216,000
Viscous Parameter, A\ (pwuw/pspSeRe) l.56x:|_0-3

Radiation Cooling Parameter, 6(2qw/k% anmB) 0.h45h
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CASES
IT

18.0
1.0
0.5
0.055

18,000
2

3.04x10"

0.226

IIT

11.0
10.0
3.00
0.065
128,000
3.2Lx10”

0.015
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Section 3
RESULTS

3.1 VALIDITY OF SERIES SOLUTIONS

The utility of the Blasius type series used in Egs. (44) and (45) (like any
series method) is restricted in that its global accuracy for a finite number
of terms can only be evaluated by a comparison with an "exact" solution for a
given problem. In this manner, Chou (Ref. 2) showed his closed form Blasius
series solution®™ of the adiabatic inviscid thin shock layer was most effective
(= 5%) in predicting the gasdynamics about a variety of bodies to the sonic
line. For the viscous and inviscid radiating flow of & thin shock layer about
a body, no "stapdard" solutions exist for comparison. The validity of a
finite series solution to these radiating flow models may, therefore, only be

assessed by indirect arguments.

The same form of series expansions were used in this investigation as was
found successful in the adiabatic inviscid solutions of Chou (Ref. 2). As
the radiative flux addition to the energy equation influences the gasdynamics
only indirectly through the density field, it was anticlipated that the
radiation flux would affect the gasdynamics of the flow by a perturbation
effect. The coupling results discussed later in this section showed this to

be true for both the invisecid and viscous models.

*
Three-term series.
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The validity of the series solution for each parameter must rest on two
factors: (1) the numerical convergence of the series solution, and (2) the
physical interpretation of the results. Consequently, the reglon of numerical
convergence of the enthalpy series and the corresponding radiative energy flux

are discussed.

Figure 3 illustrates the numerical convergence of the enthalpy profile at two
different body angles. At hhg, the deviation from second to third term is
approximately 20%. The results of applying Shanks ponlinear transformation

(Ref. 11 ) to the first three terms in the series are given. The Shanks forma-
tion represents an approximate method of predicting the converged solution of

a series expansion given three or more terms of the series. This transformation
technique has bgen frequently utilized by Van Dyke et al. (Refs. 12, 13) as an
indication of the rate of series convergence. A comparison of the Shanks results
with the third term solution indicates that a three term expansion is effective

in describing the enthalpy field to a body angle of uy°.

The numerical convergence of the radiative and convective energy fluxes to the
wall is shown in Fig. 4. Results from two methods of calculation of the
radiative energy flux are indicated. The series seplution was initially used;
however, the physically impossible nature of. the second order serieg results
of the radiative energy flux results beyond 350 indicates a serious breakdown
of the flux series beyond this point. The slow convergence indicated by the
discrepancy between the second and third order terms suggests that several

additional terms are required in order to obtain a_solution valid near the sonic
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line. This slow numerical convergence of the radiative heat flux series was
also noted by Cheng {Ref. 7). Cheng suggested the convergence could be improved
by a change in the form of the radiative heat flux series expansion. (This has
not been shown valid.) Because of the rapid convergence of the enthalpy series
as shown by Fig. 3, the radiant flux was obtained in this investigation from a
solution of the complete transfer equation (the differential approximation)

once the enthalpy distribution was cglculated. The improved numerical con-
vergence of the radiative flux by this method is shown in Fig. k. The resultbs
from the Shenks enthalpy distribution indicate the three-term solution to be

& valid solution to the sonic lime (~ 44°).

As the convergence of the convective heat flux series is directly proportional
to the enthalpy results at the wall, Fig. 4 shows the radius of convergence of
the convective flux series (Eq. 86b) to be very large. Figures 3 and U4 are
illustrative of the results of the three cases investigated. They show the
three term series solution numerically converges to the Shanks results (x 5%)

to a body angle near the sonic line (~ hSO).

Figure 5 shows the comparison of the stagnation point enthalpy results of the
viscous and inviscid series solutions with the detalled viscous code (VISC)
(Ref. 1). Slight discrepancies between the series solutions and the VISC
results are noted. The deviation of results in the boundary layer is attributed
to the constant Prandtl number value of .77 used in the series solution. This
constant value infers a higher fluid conductivity in the boundary layer than the

temperature dependent Prandtl number associated with air at high temperatures

ko
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(Ref. 14). Consequently a thicker boundary layer is experienced by the series
solution. The reason for the deviation of the enthalpy profiles in the inviscid
region is not clearly understood. It is noted, however, that the analytical
equation of state used in the series solution results in an enthalpy-temperature
relationship which is independent of pressure. Comparisons with VISC code showed
small resulting temperature differences. Because of the strong temperature de-
pendence of the absorption and emission terms, however, small temperature differ-
ences are sufficient to influence the radiative transfer significantly. This
suggests that an improvement in the series solution should include a more pre-

cise equation of state.

It should be recalled that the prime motivation for the series solution method
was to determine the degree of coupling between the momentum and energy trans-
port mechanisms. The numerical convergence results of Figs. 3 and 4 and the
comparison of the stagnation point results of Fig. 5 justify the validity of

the series expansion solutions to this end.

The nature of the enthalpy and velocity distribution through the shock layer for
different body angles is shown in Fig. 6. For the inviscid region the increase of
the total enthalpy away from the stagnation point results from the expected increase
in velocity and decrease in radiative heat loss of the flow as it leaves the stagna-
tion region. The conductivity in the boundary layer increases the boundary layer

thickness and correspondingly decreases the convective heat flux.

The negligible variation of the velocity profiles about the body as shown in
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Fig. 6 were found to be very interesting. This is due to the rapid numerical
convergence of the velocity series (Eq. 45). This insensitivity to body angle
suggests the coupling from the enthalpy distribution to the momentum field is

weak. This coupling will be discussed further in the results section.

The convective and radiative heat flux distribution about a body are shown in
Fig. 7. As was noted by Hoshizaki snd Wilson (Ref. 5) the radiative heating
decreases significantly more rapidly than the convective heating. However,

the radiative heat flux is approximately 25% of its stagnation point value at

‘the sonic line.

Figure 8 illustrates an assumed and calculated shock shape. Since the primary
objective of this report is to study the various coupling effects between
flow field and radiation field rather than to give an accurate quantitative
result for radiating thin shock layer, an iteration on shock shape was not

carried out in this investigation.
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3.2 COMPARATIVE RESULTS

A comparison of the enthalpy, velocity and heat flux results for the three
flight conditions® considered (Table 1) is presented in Figs. 9 and 10. The
relative effects of the three flight conditions upon the resulting enthalpy
and velocity profiles in the shock layer and the heat flux distribution at

and away from the stagnation point will be considered.

Illustrative enthalpy and velocity resulits are shown in Fig. 9. The results
presented are for a representative body angle of 360 for both the viscous

and inviscid models. The magnitude of radiative and viscous transport govern
the enthalpy and velocity distributions. Although radiative transport will
thicken the boundary layer somewhat, the general boundary layer distribution
is a direct function of the magnitude of viscosity. (Note, however, the thick
gas effect near the wall of the 11 km/sec inviscid case.) Comparing the
magnitudes of the viscous parameters in Table 1 for the three cases, the
largest viscous influence is anticipated for the 18 km/sec case. This is
substantiated by the enthalpy and veloclity boundary layer profiles noted in
Fig. 9. The 16 and 11 km/sec cases have significantly less viscous influence
as 1ls demonstrated by their decreased boundary layer thicknesses. Correspond-
ingly, the viscous velocity profiles of the latter two cases differ only slightly

from the inviscid runs near the wall.

The significant influence of the radiative transport is observed in the inviscid

*
In this discussion, the free flight velocities are used as the identification
of the three cases considered.
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region of the enthalpy distributions. Having comparable cooling parameters,

', +the 16 and 18 km/sec cases experience gimilar enthalpy profiles in the

inviscid region. In contrast, the small cooling parameter of the 11 km/sec

case results in an enthalpy profile approaching that of an adiabatic flow.

The conformity of the velocity results in the inviscid region indicates
the influence of the radiative transport upon the velocity field is small.
This coupling will be discussed in-detall in subsequent paragraphs of

‘this section.

Figure 10 illustrates the relative comparison of the convective and radiative
heat fluxes about the body. The differences in the distributions demonstrate
the significance of the free, stream condition upon the convective and radiative
heat loads about the body. The radiative flux is a direct function of the
temperature level in the shock layer. At high temperatures, the radiative
properties of emission and absorption are less sensitive to temperatures

than at the lower temperature levels. Consequently, even though the

temperature change in the shock layer away from the stagnation point is the
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greatest in the high velocity case® (18 km/sec), the change of radiastive
heat flux about the body for this case is the least for the three considered.
In the 11 km/sec case, the temperature change about the body is the least,
however, the temperature level ig sufficiently low that a small temperature

change results in a significamt influence upon the radiative properties.

This is demonstrated by the correspondingly large radiative flux change

for this case about the body as shown in Fig. 10.

The thickening of the enthalpy boundary layer away from the stagnation point
accounts for the general decrease in convective heating. The relative con-
vective heating distributions compare with the respective gradients of the
enthalpy profiles of Fig. 9 at the wall. The 11 and 16 km/sec cases experience
essentially the same convective heating while the large viseous influence of the
18 km/sec case produces a marked change from the other two. Because of the
strong temperature dependence of. the-radiative flux, the change in radiative
Tlux about the body 1s more pronounced for all cases than the corresponding
changes in convective heating. Due to the high radiative heat flux experienced
at the stagnation point of a blunt body, however, the radlative heating is far

from negligible at the sonic line.

3.3 MOMENTUM AND ENERGY COUPLING
An understanding of the degree of coupling between the momentum and energy

transport mechanisms was the prime objective of this investigation. Such an

*
Because of .the low velocity at the stagnation point, the stagnation point
temperature is a direct fumetion . of the free. stream velocity.

52




understanding could provide the Jjustification for simplifying approximations
in obtaining solutions of the radiating flow about a body. Buch approxima-
tions would be essential should detailed treatment of the radiative and

collisional transport be required.

The comparison of the radiative hegt fluxes for both viscous and inviscid
models away from the stagnation point for the three cases considered is
presented in Fig. 11. The stagnation point radiative heat flux for each
case is noted for comparison. As was expected, the inviscid model yielded
the higher radiative cooling; howsver, the difference between the viscous
and inviscid models was surprisingly small for all three cases. The
influence of viscosity upon the radiation wall flux was only experienced
beyond approximately 300. Being a direct function of temperature, this
difference in the radiative fluxes is attributed to the influence of viscosity
on the thickening of the boundary layer. As the flow proceeds about the
body, a greater portion of the total radiative heat flux comes from the
boundary layer region; therefore, the influence of the viscosity is ex-

perienced more dramatically far from the stagnation point. The resulting

deviations are shown to be significant near the sonic line with the viscous
results below +the inviscid case as indicated in Fig. 1ll. Consequently, the
primary effects of viscosity on the radiative heat fluxes is beyond a body
angle of approximstely 498.‘~In the stagpnation region, thé inviscid analysis
yields an accurate description of the radiative heating for the range of

Reynolds numbers and radiative coupling levels studied.
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The effect of the radiation transport upon the convective heating load about

a body is illustrated in Fig. 12. Because of the complexity added to the
viscous energy equation by the divergence of the radiative flux, the error
produced in_the convective flux by its omission is of interest. The stagna-
tion point convective heat flux results show the radiative transport can have
an appreciable influence on the convective loss. As one would anticipate,
the radiative heat loss thickens the boundary layer wresulting in a lowering
of the convective losses. Because of the large viscous effect in the 18 km/sec
case, this influence is seen to ‘effect this case less than the other two.
(The 11 and 16 km/sec results were essentially the same.) Consequently, the
results of Figs. 11 and 12 indicate the radiative heat flux determined by
neglecting the flow viscosity can overpredict the radiative loss by less

than 15%, but an overprediction of 35% in the convective heat flux can be
experienced when the radiative transport is neglected in the energy

equation.

Figure 13 illustrates the influence of the radiative transport upon the
velocity field for both the viscous and inviscid flow models. As the heating
load distributions are of prime importance, this coupling is shown indirectly
by comparing the influence of two velocity fields upon the radiative heat-

ing flux, one from a completely coupled calculation and one from a non-
radiating solution. It should be recalled that the momentum transport is only
effected indirectly by the energy field through the density. The results
shown in Fig. 13 indicate this coupling to be weak at the sbagnation point.

The "momentum without radiation" results are from the solution of the energy
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equation using a solution to the momentum equations obtained from a non-

radiating flow calculation. For-—the inviscid model, this velocity field .

represents the adiabatic inviscid series solution of Chou (Ref. 2). For

the viscous case, the velocity field was determined from a solution of the
combined energy and momentum equations without the radiative flux divergence
term. The results of Fig. 13 indicate the weak coupling of the radiative
transport on the wvelocity field as the latter influences the radiative flux
away from the stagnation point. In connection with the results of Fig. 11,
these results indicate-that an accurate description of the radiative heat
flux can be obtained by the solution of the energy equation using the closed-

form adisbatic inviscid velocity distribution of Chou (Ref. 2).




Section 4

CONCLUSIONS

A three-term series formulation of the viscous and inviscid, radiating-

absorbing flow in a thin shock layer about an axisymmetrical body has been com-

pleted. The radiative transport was modeled with a three band continuum absorp-

tion coefficient and was described by the differential approximation. Solutlons

for each of the three terms in the series have been obtained for a spherical body

at three flight conditions which provide a wide variation in the effects of vis-

cosity and radiative cooling. The three term solutions were compared with
the results of a Shanks non-linear transformation of the series. Numerical
convergence was thus confirmed for the enthalpy and velocity series away
from the stagnation point to a body angle near the sonic line. Having
obtained an enthalpy distribution, the radiative heat flux was found from
the solution of the radiative transport equation since the radiative heat
flux series was shown to slowly converge. A comparison of the series solution
with a detailed stagnation point calculation showed that the series formula-

tion had properly accounted for the essential physics of the flow.

The radiative and convective heating distributions were obtained to a body
angle of h5o for the three cases considered. The coupling between the
momentum and energy transport was evaluated by comparisons of the convective
and radiative flux distributions at and away from the stagnation point. This

coupling analysis indicated that the influence of viscosity on the radiative
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heat flux calculation was small (< 15%). The radiative transport was shown
to effect the convective heat flux more strongly. The convective heating
may be increased by 35% near the sonic line when the radiative transport is
neglected. The influence of the radiative transport on the velocity field
was shown to be small. The radiative flux results obtained by using a
velocity field obtained from a non~radiating flow calculation was shown to

agree very closely with the results of the fully coupled analysis.

These results suggest that an accurate description of the radiation heating
about a Plunt body can be obtained from an uncoupled solution of the energy
equation with an adisbatic inviscid description of the velocity field (e.g.

Ref. 2). i
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Appendix IT
ERROR ESTIMATION FOR THE QUASI-ONE-DIMENSIONAL APPROXIMATTON

In this appendix we will show that within the framework of differential approxi-
mation, the quasi-one-dimensional approximation that leads to Eq. (50 ) intro-

duces an error of the order 32, which is small.

Equation (52) can be written in body oriented coordinates as follows:

or(q,),  ork(q ) _
L B - iy, e (a-2)

T ox

For a thin shock layer, one may approximate K~ 1, ra~ r_. Thus Eq. (a-1)

becomes

L ), 29y,

ry ox oy

= ~a, 1), -47B ] (a-2)

After frequency integration and transforming x and y to & and 1, we

find

L or (a)). dr ep o(a.). 9(q_).
Pss SqXI—<v+277 8 SMS) q’“+u :1371 = —}\irS[(an)i—tl'n'Bi] (A-3)

) OF dE p on

Bquation (7 ) is now needed for the determination of Q. After frequency

integration and transformation into & and 1 variables, Eq. (7) becomes

o(1 ).
€psl'tsrs 8(Io)i —|v + 2 drs Pgts (Io)l (A-})
P d§ dg on
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Similar to the series given by Egs. (44) and (45), we write

(a); =5 1(M & +q; (M) g3 9 3(M 2 +... (a-5)
and from Eqs. (82) and (8Y4),

v=eg O am s v, B+ vgm gt 4 ) (4-6)
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p
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L
- OgHy - o'lpl)g +...] (A-7)

Substituting Egs. (A-5) to (A-7) and Egs. (44) and (45) into Egs. (A-3) and

(A-4), collecting terms of the same order in £, we obtain
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(ryey 1 di,E) Qi,l] (60)
From the above equations, it is seen that if we assume Qi 17 Qi > to be of
2 2
order unity, and since ai 12 ai o are of the same order of magnitude,
2 2
f Eg. . i . .
rom Eq. (60) A1,2 is of order (Klai,odl’l) (note that

p & 4
14) dw'’

dw is O(1l) across the shock layer).

In view of Eq. (56), we conclude from Eq. (A-9) that 9y 1 is of order .
2

From Eq. (A-8) it can be seen that the term omitted in the approximation of

Eq. (56) is of order ¢®. The resulting simplification of the radiant flux

divergence is thus valid for thin radiating shock layer models.




Appendix IIT
SERIES EXPANSION OF LARGE PARAMETER EXPONENTIAL FUNCTION

A strong exponential temperature dependence 1s experienced by the absorption
coefficient of air. For the three band model, this temperature dependence is indi-
cated by the analytical expressions for the absorption and emission coefficients
(Egs. 34-39). Description of temperature as a series expansion about the body

(Eq. 46) requires an approximation to the exponential function

2 2y b
-¢/T [1-T - (T -T. )8 +...
e-c/T = e / 1 2 372 (A-10)

found in the absorption and emission coefficients. The typical Taylor series

expansion of this exponential is given by

-c/T cT, 2
e-c/T - 1[1 + %I T2§2 +7(% (_T_?_) + (T3_T22) g_) gl* + o..  (8-11)
1 1

Because of-the strong exponential temperature dependence of the absorption
coefficient in air, the value of C 1s of order 10. The resulting large
factors CEI_‘Q/T':L and (TS-T22) C/Tl restrict the region of convergence of the
Taylor series expansion to small values of & as shown by F2 in Fig. A-L.
In order to obtain an approximate description of this exponential function at
greater distances from the stagnation point than 15°, (x = .2), additional
terms must be used in the Taylor series expansion or ancther form of a series

expansion must be used. Because of the inherent complexity of higher order

series solutions, the latter course was selected.

Th




A general three term series expansion of an exponentigl function is assumed
XD = 1o+ X"+ BY-" (a-12)

where the constants A and B are determined from boundary conditions on the

exponential at any value X. TIn contrast to the Taylor series expansion where
is utilized, an arbitrary value X = Xo is selected such that the

Eq. (A-12) represents an approximate description of the exponential to large

value of X (~ .85 or 500). Consequently, the constants A and B can be

defined

(a-13)
A

For a three term series, the coefficients of Eq. (A-13) insure a positive value
to the exponential function at all values of X. This is essential to the physics

of the absorption mechanism.

If Eq. (A-10) were writbten as

L

-¢/r -c/T,  CT,/T; g2 C(T3-T22)/Tl g
e e = e [

(a-1k)

and the second and third exponentials approximated by a series similar to Eg.

(A-12), the resulting approximation, F is plotted in Fig. A-1 (the series

3}
to second order is noted as F3(2) and to third order, F3(3)). As would be

anticipated, F is not as accurate as the Taylor series at small values of

3
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X; however, it represents the exponential function at higher X values with
three terms. In comparison results where the Taylor series were utilized (small
values of X), the influence of the approximate series was shown to have a

negligible effect upon the coupling investigation.

In this investigation the constants A and B were determined by the numerical

code for each value of C, Tl’ T2 and.T3. A value of Xo = .75 was used.

T




Appendix IV
POWER SERTES COEFFICIENTS

In this appendix, the coefficients Uy 5 Tq kl 5 pl » etc. in the series
represented by Eqs. (44) will be determined for a conical shape body. A
relationship between the distance along a body & and the body angle, 6 ,

will also be obtained.

We first determine the coefficients. For a body oriented coordinate systenm,

a description of an oblique shock is given by (see Fig. l):

u, = Sin @ Cos & + € Cos ¢ Sin 0
p. = (1-€) Cos® ®

(y+1) M&g Cos%@

Py = -
© (y-1) Mgg Cosew +2 (A-15)

do
k = -
5 d£s
r = /:S:in odé
S S

O

where o = f(§s) is the shock angle,

=G_QP
and g = T =@ .
I
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Lomas and Inoye (Ref. 10) has shown that for the inviscid, adisbatic hypersonic

case, the conical shock model is a vallid assumption for a conical body when

the free stream Mach number is greater than 5 and vy ranges from 1.1 to 1.667.

In our study, we will therefore assume the shock shape to be conical. The coni-

cal shock (in dimensionless form) can be described by the equation

(a-16)

B %o
A
ol
w
]

1}

‘—l

where X is the distance from the shock stagnation point along the line of
symmetry, r is vertical distance from line of symmetry and BS is the shock

bluntness parameter. From Eg. (A-16), we obtain

dr 1-B.X
Cot P = —— = —p=teme (a-17)
ERN Y
ag
— = l-Bs+—_'—l:— (a-18)
ax oYX -
8
One then can find the derivatives of ¢ with respect to &S . Simijarly the
nondimensional equation for a conical body 1s
2
r 4 i Bb i = i (A-l9)
= 2 2} R
2X6 s

Consequently where Xé is distance along the line of symmetry from body

stagnation point.




Consequently,

Cot ©

@ll&

(a-20)

1-B +

(a-21)

IR

B\ =2
2 (E;)Xe - BXy
where the body radius Rb has been normalized by the shock radius RS .

From Egs. (A-20) and (A-21), one can find the derivatives of © with respect

to & .

As noted in the text, the calculational procedure was to assume a shock shape,
(i.e. gives BS) calculate the resulting flow field and then iterate on a new
shock shape. For an assumed shoc¢k shape, the coefficients of the series

C C

£, = ué 3T £3 4 5T E2 o+ .. .. (a-22)

LE

can be found, under the assumption of +thin shock layer. The factor u, can

be taken as unity.

The velocity behind the shock uS , can novw be expanded in a Taylor series




2 3
du du d u
- 8 1 8 2 1l 8 3
uS - (uS)O +(d_§ )O g + 2((12) Og + 32 (dgg )g e o o @

S

1
dg
Eq. (A-23). The Taylor series expansion of u, can therefore be written

Using Egs. (4-15) - (A-22), one can evaluate the derivatives of

u, = £+ ul§3 + u3§5 +  eese (a-24)
where
wo=-g{1+3(2B) -3 + ofe)
1
uy = 5, {1+3(1-B)(29 - 15B)) - 21 ¢,(1-B,) - 10 €, + C,} + O(e)

Similarly, if the other post shock variables are expanded, we obtain the

following expressions for their coefficients (See Eq. lk):

_ 1
hn = 7%
1
r, = 31[1 + 12(1-]33) - ucl]
3 (1.
k, = -3 (3-B)
1
k, = g5 (1-B)) (19 - 15B_ - 4, )
Y 1 (a-25)
L=
- i -
P2 - - 3 [l + 3(1 - BS) Cl]
2
1 =

(v-1) M2+ 2

8L




(v-1)m ®

e

2+('y-l)M°°2

A [1+3(2-3,) - ¢ -

wir
ol

L [(v-l)Mgz ]2

2
(v-1)M + 2

The relation between £ and © is given by Egs. (A-20) and (A-21).

In the special cases of B =0 (paraboloid) and B

" (spherical), Eq. (A-21)

can be integrated to yield:

Paraboloid:
L
Cot 6 = ——5—
2% (A-26)
£ = ao/{elf\lak"(.y 2?') +£n(\/2)—c' + d1+2§')]}
Wmere T - Tfa , a8 -2
S
Sphere:
£ = a® . (a-27)
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